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Abstract 

Blocking artifact is one of the most annoying artifacts in video and image 

compression coding. In order to improve the quality of the reconstructed image and 

video, several deblocking algorithms have been proposed. In this paper, we will 

introduce these deblocking algorithms and classify them into several categories. On 

the other hand, the conventional PSNR is widely adopted for estimating the quality of 

the compressed image and video. However, PSNR sometimes does not reveal the 

quality perceived by human visual system. In this paper, we will introduce one 

measurement to estimate the blockiness in the compressed image and video. 

 

1. Introduction 

Block-based transform coding is popularly used in image and video compression 

standards such as JPEG, MPEG and H.26x because of its excellent energy compaction 

capability and low hardware complexity. These standards achieve good compression 

ratio and quality of the reconstructed image and video when the quantizer is not vey 

coarse; however, in very low bit rate, the well-known annoying artifact in image and 

video compression coding come into existence and degrade the quality seriously. This 

artifact is called Blocking Artifact, which results from coarse quantization that 

discards most of the high frequency components of each segmented macroblock of the 

original image and video frame and introduces severe quantization noise to the low 

frequency component. One example is shown in Fig. 1 to illustrate this. 
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Fig. 1 The highly compressed image block 

 

The blocking artifact incurs discontinuity across the block boundaries in the 

reconstructed image and video. Fig. 2 (a) and (b) shows the original image and the 

compressed image, respectively. As can be seen from Fig. 1, there are many square 

blocks in the highly compressed image. 

  

Fig. 2 (a) The original image   (b) The highly compressed image 

 

    In order to reduce the annoying blocking artifacts, several deblocking algorithms 

had been proposed. We can classify the deblocking algorithms into four types: in-loop 

filtering, post-processing, pre-processing and overlapped block methods. The in-loop 

filtering algorithm inserts deblocking filter into the encoding and decoding loop of the 

video CODEC, and one example of this method is adopted in H.264/AVC. The 



post-processing algorithms apply some post-processing lowpass filters and algorithms 

after the image and video has been decoded to improve the image and video quality. 

The pre-processing algorithms pre-process the original image and video so that the 

quality of the reconstructed image and video can be the same as that without being 

processed under lower bit rate. The overlapped block methods include lapped 

orthogonal transform (LOT) whose transform bases are overlaid to each other and 

overlapped block motion compensation (OBMC) which consider the neighboring 

blocks for motion estimation and motion compensation in video coding. 

    The remained part of this paper is organized as follows. In Section 2, the 

observations on blocking artifacts will be introduced. In Section 3, we will introduce 

the in-loop filtering algorithm for removing the blocking artifact in video coding only. 

In Section 4, several post-processing algorithms in image and video coding will be 

described. In Section 5, the pre-processing method will be introduced. In Section 6, 

we will give a brief description of the LOT and OBMC method for reducing the 

blocking artifact. In section 7, we will introduce some blockiness measurement. In 

Section 8, we will compare the pros and cons of the algorithms introduced in this 

paper. In Section 9, we will give some conclusions and issues of the future word. 

 

2. Observations of Blocking Artifacts 

    There are three major observations on blocking artifacts could be noted in 

block-based transform coding (BTC). 

I. Because of the masking effect of the human visual system (HVS), there are 

different sensitivity of the HVS to areas of the image and video with 

different complexity. The blocking artifacts are more noticeable in flat areas 

than in complex areas. 

II. The deblocking filter can remove some high frequency discontinuity over 

the block boundaries; however, it may result into blurring the real edges in 

the original image or video frames. 

III. The motion compensation prediction (MCP) propagates the blocking 

artifacts into the next frame in video coding. 

 

    Several deblocking algorithms are mainly based on these three observations, so 

we describe them in this section in advance. In the following sections, we will enter 

the primary issues of the deblocking algorithms. 

 

 

 



3. In-loop Deblocking Filter 

    As mentioned in the previous section, we know that the blocking artifact will 

propagate into the later frames in video coding, which will degrade the visual quality 

and thus affect the compression ratio. Based on this observation, we can achieve 

higher compression ratio and better visual quality if we can effectively eliminate the 

blocking artifacts. Therefore, H.264/AVC and H.263+ add the deblocking filter into 

the coding loop to improve the visual quality and the accuracy of MCP. In the 

following two sub-sections, we will introduce the H.264/AVC in-loop filter and one 

novel in-loop filter in [4]. 

3.1 H.264/AVC In-loop Deblocking Filter 

    In order to enhance the visual quality and coding performance, H.264/AVC 

adopts the in-loop filter in its coding loop [1-3]. Fig. 3-1 shows the encoding 

architecture of H.264/AVC. As can be seen from the figure, the previously 

reconstructed frame passes the loop filter before motion estimation. Because the 

filtered frame is more similar to the original frame, we can obtain motion vectors with 

higher accuracy. 
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Fig. 3-1 The encoder architecture of H.264/AVC 

 

    Now we have the fundamental concept about the deblocking filter in the 

H.264/AVC encoder, we will briefly describe how the H.264/AVC deblocking works. 

Fig. 3-2 shows the model of two dequantized blocks across the boundaries in 

H.264/AVC. 0p , 1p , 2p  and 3p  denote the pixels in the left (top) 4х4 block while  



0q , 1q , 2q  and 3q  denote the pixels in the right (down) 4х4 block. Because only 

low frequency components are reserved after coarse quantization, the discontinuity, 

which seems to be a newly high frequency component, comes into existence across 

the block boundary. Therefore, we must apply the lowpass filter to discard the new 

high frequency components. The orange curve indicates the pixels after filtering. 

p3 p2 p1 p0

q0 q1 q2 q3

 

Fig. 3-2 The model of blocking artifact across the block boundary in H.264/AVC 

 

    Because there are inter-frame and intra-frame coding in video compression, 

H.264/AVC apply the filters with different strength based on the type of coding 

frames. Thus, H.264/AVC encoder must determine the boundary strength (BS) before 

filtering. The BS parameters are determined according to Table 3-1. 

 

Table 3-1 The coding mode based decision for the parameter BS 

Block modes and conditions BS Pixels to be modified 

At least one of the blocks is Intra coded and the 

edge is a macroblock edge 

4 0p , 1p , 2p  

0q , 1q , 2q  

Both of the blocks are Intra coded, but the 

boundary is not a macroblock boundary 

3 0p , 1p  

0q , 1q  

Neither of the two blocks are intra coded, and the 

two blocks contain inter-coded coefficients (That 

is, both blocks refer to the same frame) 

2 0p , 1p  

0q , 1q  

Neither of the two blocks are intra coded and 

inter coded 

1 0p , 1p  

0q , 1q  

Otherwise 0 No filtering is applied 

 

    On the other hand, H.264/AVC defines two parameters α  and β  to determine 

what type of the filter will be applied. Because there is no room for listing all the filter 

coefficients of each filter, the reader can refer to [3] for more details about this. 

 

 

 



3.2 Optimal Post-Process/In-Loop Filtering 

    In the previous sub-section, we introduced the H.264/AVC in-loop filter for 

removing the blocking artifact. However, the filter coefficients are fixed so that they 

may not be the best solution to all the macro blocks. In [4], Kim et al. proposed a new 

adaptive in-loop filtering algorithm for removing the blocking artifacts and recovering 

the compressed video as much as possible. Fig. 3-3 shows the overall block diagram 

of the encoder in [4]. 
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Fig. 3-3 The overall block diagram of the encoder in 

 

    In contrast to the H.264/AVC in-loop filter, the algorithm adaptively determines 

the filter coefficients according the new input frame. We find the optimal filter 

coefficients which minimize the difference between the previous reconstructed frame 

and the new input frame. In this approach, the in-loop optimal filter (ILOF) is applied, 

and the optimal filtered frames are used in the coding loop. In another approach called 

OPF, the optimal filtered frames are not used in the coding loop. Until now we have a 

brief knowledge about the overall encoder architecture in [4]. We will introduce how 

to obtain the filter coefficients in the remained part of this sub-section. 

    We denote the new input frame by I, which is a W-by-H matrix. The filter kernel 

is expressed as l-by-l matrix G and the reconstructed frame is expressed as a W-by-H 

matrix I� . The relationship of these three matrixes can be expressed as 

 = ∗I I G�  (3-1) 



    If we can find one matrix G satisfies (3-1), the optimal filter can be obtained. 

That is, the objective is to find the filter matrix satisfies 

 arg  min || ||− ∗
G

I I G�  (3-2) 

    For simplicity, we convert the filter and the original image matrix to row-stacked 

form vectors as (3-3) and (3-4) 

 

The filter kernel coefficients: ( ) ( , ),  0 , 1m nl m n m n l+ = ≤ ≤ −g G  (3-3) 

 

The original image values: ( ) ( , ),  0 1 and 0 1i jl i j i W j H+ = ≤ ≤ − ≤ ≤ −b I  (3-4) 

 

    Here we define a new matrix called Window Matrix A with size W-by-H, whose 

element ai,j is composed of the l-by-l matrix which is a window centered around the 

pixel location (i,j) of ( , )i jI�  as shown in Fig. 3-4. The l-by-l matrix is not right the 

element of ai,j, it must be converted to the row-stacked form vector with size l
2
. In 

order to be consistent with the previous expression, the matrix A is converted to (3-5). 

G

l

l I(i,j)
^

 

Fig. 3-4 The element of the window matrix 
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 (3-5) 

    Now we can express (3-1) as (3-6) 

 =Ag b  (3-6) 

    In order to solve (3-6) using the linear algebra methods, we must obtain the 

square matrixes. Therefore, we multiply (3-6) by A
T
 in both sides and obtain the new 

equality (3-7) 

 =Ag b  (3-7) 



where T
l l× =A A A  and T

1l× =b A b  

    If the inverse matrix of A  can be obtained, we can find the filter coefficients g 

that minimize (3-2). However, the computation cost to find the filter coefficients is 

high because the size of the matrix A  is very large and it is hard to find its inverse 

matrix. In [4], the authors found that (3-7) can be solved by an iterative algorithm 

called iterative preconditioned conjugate gradients algorithm [5], which can save 

large computation. The algorithm is not introduced here, the interested reader can 

refer to [4] for more details. 

 

4. Post-processing Deblocking Algorithms 

    Post-processing algorithms are the most popular methods for improving the 

quality of the image and video and eliminate the annoying blocking artifact. On the 

other hand, the post-processing algorithms can achieve deblocking without the 

original image and video, so the standard need not to be modified. In this section, we 

will introduce several post-processing algorithm for removing blocking artifact. 

 

4.1 Reduction of Blocking Artifacts in DCT Domain 

    In this subsection, we introduce a post-processing filtering algorithm in DCT 

domain [6-8]. We define the block ,

, ( , )k l

m nb u v  and ,

, ( , )k l

m nB u v  first. , ( , )m nb u v  is the 

(m,n)-th 8х8 block in the compressed image, and , ( , )m nB u v  is the DCT coefficients 

of , ( , )m nb u v . ,

, ( , )k l

m nb u v  is the shifted block with displacement k pixel in the x 

direction and displacement l pixels in the y direction with respective to block 

, ( , )m nb u v , and ,

, ( , )k l

m nB u v  is the DCT coefficients of the block ,

, ( , )k l

m nb u v . One 

example is shown in Fig. 4-1. 



1,m n
b −

,m nb

1, 1m n
b − −

, 1m n
b −

1, 1

,m nb
− −

 

Fig. 4-1 Example of shifted block 
,

, ( , )k l

m nb u v  

     

    In the original image, the neighboring DCT coefficients at the same frequency 

are very similar and do not vary radically within a small range. Thus, we can apply 

lowpass filter to the DCT coefficients at each frequency to filter the high frequency 

parts resulting from blocking effect. However, this method may blur the real edges in 

the original image, so we must have the mechanism to detect activity of the block and 

apply the filter with corresponding strength. 

    DCT-domain filtering is applied to revise the block , ( , )m nB u v  to obtain the new 

DCT coefficients � , ( , )m nB i j . 

 � ,
, , ,

1
( , ) ( , )

h h
k l

m n k l m n

k h l h

B i j w B u v
W =− =−

= ∑ ∑  (4-1) 

 ,

h h

k l

k h l h

W w
=− =−

= ∑ ∑  (4-2) 

    The post-filtering works in different ways for the blocks with different activities.  

 

    For blocks with low activity, the blocking artifact is more noticeable, so we 

apply strong filtering to smooth the high frequency components. The filter 

coefficients are defined in (4-3). 

 , 1,  , 2,..., 2
k l

w k l= = −  (4-3) 

    For blocks with high activity, the blocking artifact is less noticeable, so we apply 

filtering with less strength to smooth blocking artifact and preserve the real edge. The 

filter coefficients are defined in (4-4). 



 ,

3,  for ( , ) (0,0)

1,  
k l

k l
w

otherwise

=
= 


 (4-4) 

    There are several functions to detect the activity. However, we do not list the 

lengthy equations in this paper, the interested reader can refer to [6-8] for more 

details. 

 

4.2 Deblocking Using Weighted Sums of Symmetrically 

Aligned Pixels 

    In [9], Averbuch et al. proposed a new deblocking using the symmetrical pixels 

across the block boundaries. The deblocking algorithm using weighted sums of 

symmetrically aligned pixels is abbreviated as WSSAP.  

    Denote the image with size R×C as follows 

 { , },  0 -1,  0 -1
i j

I p i R j C= ≤ ≤ ≤ ≤  (4-5) 

    We divide the input image into several 8×8 sub-blocks Br,c 

 , 8 8 , 0,...,7{ , } ,  0 ,  0
8 8

r c r i c j i j

R C
B p r c+ + == ≤ ≤ ≤ ≤  (4-6) 

    We define a deblocking frame B(Sf )r,c whose size is Sf×Sf . 

 �
,

,,

8 8
( ) { },  0 ,  0

m n

r cf r c

f f

S B m n
S S

= ≤ ≤ ≤ ≤B  (4-7) 

where �
,

, 1 1
8 ( ) ,8 ( )

2 2

{ },  0 1,  0 1
f f

m n

r c f f
r m S i c n S j

B p i S j S
+ − + + − +

= ≤ ≤ − ≤ ≤ −  

    Two examples of (4-6) are shown in Fig. 4-2. 
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 (a) Sf=4                    (b) Sf=8 

Fig. 4-2 Two examples of the deblocking frames B(Sf )r,c 

 



    For simplicity, the 8r+(m-(1/2))Sf and 8c+(n-(1/2))Sf terms in (4-7) are ignored, 

and we rewrite (4-7) as (4-8). 

 �
'

,
'

, , , 0,...,
{ } , where 1

f

m n

r c i j i j f fS
B p S S

=
= = −  (4-8) 

    The pixel to be filtered is denoted by ,i j
p , and the filtered pixel 

,

'

i j
p  is defined 

in (4-9). The pixels ' ,fS i j
p

−
 and ', fi S j

p
−

lie symmetrically to ,i j
p , and the 

pixel ' ',f fS i S j
p

− −
lie symmetrically to ,i j

p  with respect to the center of the deblocking 

frame. The four weights ,i j
α , ' ,fS i j−

β , ', fi S j−
γ , ' ',f fS i S j− −

δ are the filter coefficients. 

 ' ' ' ' ' ' ' '
,

'

, , , , , , , ,i j f f f f f f f f
i j i j S i j S i j i S j i S j S i S j S i S j

p p p p p
− − − − − − − −

= α ⋅ + β ⋅ + γ ⋅ + δ ⋅  (4-9) 

    In [9], the authors obtain the filter coefficients by extending the 1D case to the 

2D case. How the filter coefficients are obtain is not included in this paper, please 

refer to [9] for more details. In the 1D case, we have two filter coefficients only for 

each pixel, and the filter coefficients can be classified into linear solution and 

quadratic solution, which are defined in (4-10) to (4-12). 

1) Linear Solution 

Let the linear solution 
L

ω be of the form ( )
L

x ax bω = + . Then the solution is 

 [0, 1]( ) ,  if x [0, 1]k

L
x x k

k

− θ − η
ω = + η ∈ −

−1
 (4-10) 

 [0, 1] (2 )
( ) ,  if x [ ,2 1]k

L

k
x x k k

k k

− η − θ θ − η − θ
ω = + ∈ −

−1 −1
 (4-11) 

2) Quadratic Solution 

Let the linear solution 
Q

ω be of the form 2( )Q x ax bx cω = + + . Then the solution is 

 2 ( )(1 2 )
( )

( (
Q

k
x x x

k k k k

(θ − η) θ − η −
ω = + + η

−1) −1)
 (4-12) 

where 
2

f
S

k =  and [0,1]θ ∈  

 

    Now, we can obtain the 2D filter coefficients based on (4-10) to (4-12). The filter 

coefficients ,i j
α , ' ,fS i j−

β , ', fi S j−
γ , ' ',f fS i S j− −

δ  are defined in (4-13) to (4-16). 

 , ( ) ( )
i j

i jα = ω ⋅ω  (4-13) 



 '

'

,
( , ) ( )

f
fS i j

S i j j
−

β = ψ − ⋅ω  (4-14) 

 '

'

,
( ) ( , )

f
fi S j

i i S j
−

γ = ω ⋅ψ −  (4-15) 

 ' '

' '

,
( ) ( )

f f
f fS i S j

S i S j
− −

δ = ψ − ⋅ψ −  (4-16) 

where ( )ω ⋅ and ( )ψ ⋅ are both linear or quadratic 

    Until now, we obtain the filter coefficients, so we can achieve deblocking 

through (4-9). 

 

4.3 Deblocking Using Offset and Shift Technique 

    We have introduced two post-processing deblocking algorithms. However, the 

computation cost of the DCT domain deblocking method is high and the WSSAP 

algorithm may excessively blur the image. In [10], Kim et al. proposed a new 

deblocking algorithm that saves large computation cost and prevents from excessively 

blurring the real edge. 

    The algorithm is described as follows. In order to check the direction the 

blocking artifact locates, we need some measurements. First, we define a deblocking 

block (DB) as a squared of adjacent pixels as shown in Fig. 4-3. 
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Fig. 4-3 The Deblocking Block 

 

    To classify the type of the DB, we define the horizontal activity and the vertical 

activity as follows: 

 
6

0

H k

k

ACH C
=

= ∆∑  (4-17) 



 
6

0

V k

k

ACH R
=

= ∆∑  (4-18) 

where C∆ and R∆ are the difference in the horizontal and vertical direction, 

respectively. They are define as 

 
7

, , 1

0

| |k i k i k

k

C q q +
=

∆ = −∑  (4-19) 

 
7

, , 1

0

| |k k j k j

k

R q q +
=

∆ = −∑  (4-20) 

    After the activity variables are derived, we can classify the DB into four types 

according to Table 4-1. The term UDB indicates Uniform Deblocking Block. The two 

terms HDB and VDB indicate Horizontal Deblocking Block and Vertical Deblocking 

Block, respectively. The term CDB indicates Complex Deblocking Block. 

 

Table 4-1 Classification of the deblocking block 

 UDB HDB VDB CDB 

ACTH < T > T < T > T 

ACTV < T < T > T > T 

 

    After the block classification, we apply different filtering method on each DB 

type as shown in Fig. 4-4. 

 

(a)UDB           (b)HDB           (c)VDB           (d)CDB 

Fig. 4-4 Filtering direction and strength for each DB type 

 

    In order to find the amount of the modification, we define a variable “offset” as 

 3 4offset p p= −  (4-21) 

1) Filtering for Uniform Deblocking Blocks 

    Because the whole block is uniform, we must apply the strong filter to remove 

the blocking artifact. The filtered pixels are defined as (4-22) and (4-23). One 

example is shown in Fig. 4-5. 

 ' | |
( ) ( ),  for i=1,2,3

i i

i

offset
p p sign offset= − ⋅

α
 (4-22) 



 ' | |
( ) ( ),  for i=4,5,6

i i

i

offset
p p sign offset= + ⋅

α
 (4-23) 

where {8, 4, 2, 2, 4,8}
i

α =  

p1 p2 p3 p4 p5 p6

offset

Block boundary
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p1 p2 p3 p4 p5 p6

Block boundary

Offset/8
Offset/4

Offset/2

Offset/2
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(b) 

Fig. 4-5 The one-dimensional representation of the UDB (a) Before filtering (b) 

After filtering 

 

2) Filtering for Directional Deblocking Blocks 

    The directional deblocking block (DDB) includes the HDB and VDB.  

� If both the top and bottom blocks are regarded uniform, the current block is 

regarded as HDB. For HDB, we perform weaker filtering along the horizontal 

direction and stronger filtering along the vertical direction. 

� If both the left and right blocks are regarded uniform, the current is regarded as 

VDB. For VDB, we perform the weaker filtering along the vertical direction and 

stronger filtering along the horizontal direction. 

    The filtering with less strength is defined in (4-24) and (4-25). 

 '

3 3

| |
( ) ( )

4

offset
p p sign offset= − ⋅  (4-24) 

 '

4 4

| |
( ) ( )

4

offset
p p sign offset= + ⋅  (4-25) 

 

3) Filtering for Complex Deblocking Blocks 

    If the DB is classified to CDB, we only apply weaker filtering along the block 

boundary and preserve the inter texture as shown in Fig. 4-4 (d). After the block 

boundary is filtered, a 2-D mask is used to remove blocking artifact while preserving 



the real edges. The filter is defined in (4-26). 
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Fig. 4-6 The filter kernel 

 

 ' 1 9 3 7 2 8 4 6
5 0 5 1 2 3 4

2 2 2 2

g g g g g g g g
g w g w w w w

+ + + +
= ⋅ + ⋅ + ⋅ + ⋅ + ⋅  (4-26) 

 

 1 1 9(| |)w f g g= −  (4-27) 

 2 3 7(| |)w f g g= −  (4-28) 

 3 2 8(| |)w f g g= −  (4-29) 

 4 4 6(| |)w f g g= −  (4-30) 

where ( ) 0.25 , where f W e−β∆∆ = ⋅ β = 0.04  

 

5. Pre-processing Algorithms 

    We can improve the quality of the compressed image and video by applying the 

deblocking algorithms. The deblocking algorithms described above are all 

post-precessing methods. In [13], Wang et .al proposed a pre-processing algorithm to 

enhance the coding efficiency and to achieve deblocking at the same time. Fig. 5-1 

shows the results of reconstructed image with and without pre-processing. Fig. 5-1(a) 

shows the original image S  without pre-processing, its compressed frame '
S  and 

its reconstructed frame ''
S . Fig. 5-1(b) is the frame after pre-processing 

p
S , its 

compressed frame '

pS  and its reconstructed frame ''

pS . From the reconstructed 

results, we can observe that both of the two reconstructed frames ''
S  and ''

pS  are 

very similar to the original frame S , but the data quantity of '

pS  is much less than 

that of '
S . 
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Fig. 5-1 The reconstructed block boundary with and without pre-processing 

 

    We introduce one pre-processing method combined with H.264 inloop 

deblocking filter. Denote the 8-point block boundary in original image as I, the block 

boundary after pre-processing as R and the filtered block boundary as V. The 

deblocking filter only works on the center four points 0 1 2 3, , ,q q q q . The three block 

boundary is defined in (5-1) to (5-3). 

 3 2 1 0 0 1 2 3Original(I) : ( , , , , , , , )p p p p q q q q  (5-1) 

 ' ' ' ' ' ' ' '

3 2 1 0 0 1 2 3Pre-processed(R) : ( , , , , , , , )p p p p q q q q  (5-2) 

 ' ' '' '' '' '' ' '

3 2 1 0 0 1 2 3Filtered(V) : ( , , , , , , , )p p p p q q q q  (5-3) 

    Our objective is to minimize the difference between I and V. We define the 

difference ε  in (5-4), and we can obtain the minimum by take the derivative of ε .  

 V Iε = −  (5-4) 

    The function have four variables ' ' ' '

0 1 2 3( , , , )Q q q q q= , and the equation is 

expressed as (5-5). 

 2( ) 0

T
V I V

V I
Q Q Q

ε ∂ −  ∂ ∂
= = − = ∂ ∂ ∂ 

 (5-5) 

    By solving (5-5), we can obtain the pre-processing formulas which are defined in 

(5-6) to (5-9). 



 ' ' '

0 0 1 0 1 2 0 2

1
( 9 40 20 40 16 8 49 10 )

49
q p p q q q p p= − + + + + − − −  (5-6) 

 ' '

1 0 0 14 4 4q p q p= − + +  (5-7) 

 ' '

2 0 1 0 1 2 2

1
( 4 4 2 4 18 40 )

49
q p p q q q p= − − − − + + +  (5-8) 

 '

3 3q q=  (5-9) 

 

6. Overlapped Block Methods 

    As mentioned earlier, the block-based transform and quantization is adopted to 

achieve decorrelation in many existing image and video compression standards. 

However, this kind of transform does not take the correlation of pixels across the 

block boundaries into account, so the block artifact appears in the reconstructed image 

and video. On the other hand, in video compression coding, the motion compensation 

will propagate the blocking artifact into next frames. In order to overcome these 

problems, the overlapping transform and overlapped block motion compensation 

methods are proposed. In the remained parts of this sub-section, we will introduce 

these two methods. 

 

6.1 Lapped Orthogonal Transform 

    In conventional block-transform, the image is segmented into several 

non-overlapping blocks and each of these blocks is transformed and quantized 

separately. In Lapped Orthogonal Transform [14], the blocks overlap slightly, so the 

redundant information is transmitted for the samples in the block boundaries. The 

LOT (Lapped Orthogonal transform) is introduced as follows. 

    Assume the 1D discrete time signal is a sequence of MN samples, where N is the 

block size, and M is the number of the segmented blocks. We denote the original 

signal by x0 and the transform coefficients as y0. The relationship between x0 and y0 is 

expressed in (6-1). 

 0 0y Tx=  (6-1) 

where T  is the transform matrix with size MNхMN 
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where 0P , 1P  and 2P  are matrices with size LхN. The matrices 1P  and 2P  are 

different from 1P  because of the two boundary block of the original have only one 

neighboring block. Thus, they are defined in a different way. 

    We show the concept of LOT in Fig. 6-1. In conventional block-based transform, 

we code current block individually. However, in LOT, we take the current block and 

its neighboring block for decorrelation. We should note that we can obtain the 

transform coefficients with size N after taking LOT of the block with length L. 

 

Fig. 6-1 The current block and its neighboring block for decorrelation in LOT 

 

    The autocorrelation matrix of the input signal is denoted by 
xx

R . 
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 (6-3) 

    An optimal LOT should maximize the energy compaction measurement 
TC

G  
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where 2

i
σ  is the ith diagonal entry of the matrix 0R  

 0 0 0

T

xx
R P R P=  (6-5) 

    After some math manipulation, we can obtain the transform matrix 0P  in (6-6) 
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where 1 2 / 2 1N
Z TT T −= � .

e
D  and 0D  are the NхN/2 matrices containing the even and 

odd DCT functions, respectively. 

    The plane rotation matrix T  is defined as 
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where 
cos sin
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sin cos
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Y
θ θ

θ
θ θ
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.    Now we have the transform matrix (6-6), so we can present the implementation 

here. We take block size 8 for introduction, and the flow diagram of the fast LOT is 

shown in Fig. 6-2.  
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Fig. 6-2 Fast LOT with block size 8 

 

    Fig. 6-3 shows the overall LOT of the whole image. As can be seen from this 

figure, the first and last blocks do not have the complete neighboring blocks. Thus, we 

reflect the data at these two boundaries, which can form the transform matrix 1P  and 



2P  in (6-2).  
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Fig. 6-3 Flow diagram of the fast LOT for the full data sequence 

 

The notation J in Fig. 6-3 is the “counter-identity” which is define as 
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    With the fast LOT algorithm, we can compute the DCT coefficients for each 

blocks and then applying the +/- and Z . Thus, the computation cost of LOT is not 

very far from that of DCT, and we can reduce the blocking artifact effectively. 

 

6.2 Overlapped Block Motion Compensation 

    The conventional motion estimation and compensation algorithm produce block 

edges in the compensated frame because the motion vectors between the neighboring 

blocks are not always the same. These block edges will decrease the coding efficiency 

because the energy of the residue signal increase. When the LOT is applied to the 

residue, the block edges within the overlapped block will introduce high frequency 

components to the residue. Therefore, overlapped block motion estimation and 



compensation algorithm [15] is proposed to reduce the high frequency components in 

the residue 

 

A) Overlapped block Motion Estimation 

    Fig. 6-4 shows the overlapped block motion estimation scheme. The reference 

frame and the current frame are segmented into several overlapped blocks. The target 

block ( , )
iv

P x y  is predicted from an enlarged block size NхN (which is larger than 

the original block size). The difference block for each target block is defined as 

 ( , ) ( , ) ( , )
i iv v

E x y P x y S x y= −  (6-9) 

where ( , )S x y  is the block in the original frame. 

    In order to reduce the high frequency components in the difference blocks, a 

window function ( , )W x y  is operated to the prediction error signal. The window 

function is designed to decay toward the block boundaries. Therefore, we can obtain a 

new weighted difference block ( , )
iv W

E x y  defined as 

 ( , ) ( , ) ( , )
i iv W v

E x y E x y W x y= ×  (6-10) 

    We search for the candidate motion vector by using ( , )
iv W

E x y , and the mean 

absolute error (MAE) is redefined in (6-11) 
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Fig. 6-4 Overlapped Block Motion Estimation 



B) Overlapped block Motion Compensation 

    After the motion vector ( , )
v

P x y  for each target block ( , )
iv

P x y  is determined, 

the compensated block is also generated from the enlarged reference blocks. The 

overall overlapped block motion compensation scheme is shown in Fig. 6-5. 

( , ) ( , ) ( , )
vW v

P x y P x y W x y= ×

Overlapped Block

Motion Vectors

Prediction Frame

Reference Frame

Window Function

 

Fig. 6-5 Overlapped Block Motion Compensation 

 

    The prediction block picks up the most similar block by the motion vector. The 

enlarged block is also multiplied with the window function ( , )
v

P x y  to form the 

weighted prediction block ( , )
vW

P x y . 

 ( , ) ( , ) ( , )
vW v

P x y P x y W x y= ×  (6-12) 

    The whole prediction frame is generated by summing all the weighted prediction 

blocks. With the overlapped block motion estimation and motion compensation 

algorithm, the reconstructed frames without severe block edges can be obtained. 

 

7. Block-Edge Impairment Metric 

    Although PSNR (Peak Signal-to-Noise Ratio) is widely adopted to express the 

quality of the reconstructed image and video, it does not always reveal the real quality 

perceived by the HVS. On the other hand, we can improve the quality of the 

compressed image and video by means of deblocking algorithms and the PSNR will 

increases proportional quality. However, in some condition, the improving scale of 

PSNR is not high, but large amount of the blocking artifacts are reduced. Therefore, 

several block-edge impairment metrics [16-17] have been proposed. 

    In this section, we introduce one of these block-edge impairment metrics called 

Generalized Block-Edge Impairment Metric, abbreviated GBIM. Assume the 

reconstructed image or video frame is f  defined as 



 { }1 2, ,...,
cc c cN

=f f f f  (7-1) 

where 
cj

f  is the jth column and 
c

N  is the width of the image f .  

    The interpixel difference between the block boundaries in the horizontal 

direction is defined as  
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where each of the block is a 8 х 8 block. 

    The metric to measure the horizontal blockiness is defined as 
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where 1 2 /8 1, ,...,
cN

diag −
 =  W w w w  is the diagonal weighting matrix which takes 

the spatial characteristics into account. 1, 2, ,, ,...,
k j j Nr j

diag w w =  w w  where 
r

N  is 

the height of the image, and 8j k= ×  for 1,2,..., / 8 1
c

k N= − . 

    The weighting function ,i j
w  is defined as 
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where ζ  is the average luminance value which is proportional to the blockiness and 

distortion, and 
ln(1 255 )

ln(1 )

ζ
λ

ζ

+ −
=

+
.  

    For horizontal blocks, the mean ,i j
µ  and variance ,i j

σ  is defined as the 

average of the two adjacent blocks 
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    We normalize 
h

M  by the average interpixel difference E to obtain 
hGBIM

M . 

 /
hGBIM h

M M E=  (7-7) 
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    The 
hGBIM

M  is used to describe the horizontal blockiness, we can obtain the 

vertical blockiness metric
vGBIM

M  by similar process. Finally, we can obtain the 

GBIM 
GBIM

M  which is defined as 

 
GBIM hGBIM vGBIM

M M Mα β= +  (7-9) 

    In order to show the performance of GBIM, we give two examples shown in Fig. 

7-1. As can be seen from the simulation result, the PSNR of the compressed image 

and the filtered one is not far different from each other, but the blockiness is reduced 

and the 
GBIM

M  reveals the fact. 

 

  

Fig. 7-1 (a) Reconstructed Image Fig. 7-1 (b) Reconstructed image after 

deblocking 

GBIM
M =3.11, PSNR=21.75 dB 

GBIM
M =1.05, PSNR=21.86 dB 



Fig. 7-1 The PSNR and GBIM of two compressed images before and after 

deblockin, respectively 

 

8. Comparison 

    In this section, we discuss the pros and cons of each algorithm. 

A) In-loop Deblocking 

 

 Advantage Disadvantage 

H.264/AVC 1. It adaptively selects the 

deblocking filter based on 

the strength of blockiness for 

deblocking. 

2. The complexity is low 

The coding efficiency is 

lower than the OPF/OLF 

algorithm 

Optimal 

Post-Processing and 

In-loop Filtering 

It can achieve better coding 

performance and reduce the 

blocking artifact more 

effectively than H.264/AVC 

because it obtains the 

optimal filter coefficients by 

referring to the new input 

frame 

The complexity is very high 

because it must iteratively 

compute the filter 

coefficients. 

 

B) Post-processing Deblocking Algorithms 

    The post-processing algorithms are employed at the decoder output, so they have 

good potential to be integrated into existing image and video standards. 

 

 Advantage Disadvantage 

Reduction of 

blocking artifacts 

in DCT Domain 

1. Take the HVS into account 

2. Apply the filter with less 

strength to preserve the real edge 

3. Apply the filter with larger 

strength to reduce the blocking 

artifact 

High complexity and 

computation time because of 

large amount of DCT 

operation 

 

WSSAP 1. The filter coefficients can be 

obtained in advance 

The deblocking operation is 

applied to the whole image, 

so it may blur the real edge 

Offset and Shift 1. Take the HVS into account  



Technique 2. Apply the filter with less 

strength to preserve the real edge 

3. Apply the filter with larger 

strength to reduce the blocking 

artifact 

4. Low Complexity 

5. Prevent the processed video 

and image from blurring 

 

C) Pre-processing Deblocking Algorithms 

    The pre-processing deblocking algorithms combine the post-processing 

deblocking algorithms to reduce the data rate, and the quality of the image and video 

is very close to that without pre-processing. 

 

D) Overlapped Block Methods 

    All the deblocking algorithms described reduce the blocking artifact can be 

classified into the remedy methods. In contrast to the other method, the overlapped 

block methods prevents the blocking artifacts from happening in advanced, so it can 

be classified into Prophylaxis. The disadvantage of the overlapped block methods is 

that they are not compatible with the existing video and image standards. 

 

9. Conclusions and Future Work 

In this paper, we have introduced several deblocking algorithms to the reader. In 

section 2, we briefly describe the characteristics and observations of blocking artifact, 

and several deblocking algorithms that take advantage of these characteristics and 

observations to improve the quality of the compressed image and video. In section 3 

to 6, we introduced the four categories of deblocking algorithms, and the related cases 

are given to each category. 

The first type is the in-loop filter, which is used to reduce the blocking artifact in 

compressed video. The advantage of the in-loop filter is that it can achieve better 

improvement because it can refer to the new input video frame while the conventional 

deblocking algorithm adopted in image compression is blind to the source image. 

However, the in-loop filter is not compatible with the existing video coding standard. 

The second type is the post-processing deblocking algorithm, which is the most 

popular method because it can be combined with the existing image and video coding 

standards. The basic idea of the post-processing methods is filtering the sharp edge 

over the block boundary to smooth the compressed image and video by using the 



lowpass filter. The third type is the pre-processing deblocking algorithm, which 

modifies the source image and video in advance and reduces the bit rate, can achieve 

the quality close to the direct compressed image and video. The last type is the 

overlapped method, which is much different from other methods because the rule of it 

is taking preventive injection instead of putting out the fire. The drawback of the 

overlapped methods is that it is not compatible with the existing standards, which is 

the same as the in-loop filter. 

    In section 7, we introduce one blockiness metric GBIM because the conventional 

metric PSNR does not always reveal the real quality perceived by the HVS. From the 

simulation result we can observe that the PSNR of the processed image is very close 

to that of the un-processed one, but GBIM effectively reveals the difference. 

    To summarize, the conventional deblocking algorithms smooth the sharp block 

boundary by lowpass filter. However, many conventional methods do not exploit the 

characteristics of the blocking artifacts. Nowadays, more and more deblocking 

algorithms take advantage of the characteristics of blocking artifacts to improve the 

quality of the compressed image and video. These methods apply strong filter over the 

flat area and weak filter over the complex area due to the HVS sensitivity to the 

blocking artifact. As just mentioned, these new deblocking algorithms may not 

improve the PSNR in a large degree, so we must have some blockiness metric to 

estimate the performance of these deblocking algorithms. To add all the discussion, 

the better deblocking algorithm based on the characteristics of the blocking artifacts 

and the better blockiness metric may be the future trend. 
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