
Deblocking Algorithms in Video and

Image Compression Coding

Wei-Yi Wei

E-mail: r97942024@ntu.edu.tw

Graduate Institute of Communication Engineering

National Taiwan University, Taipei, Taiwan, ROC

Abstract

Blocking artifact is one of the most annoying artifacts in video and image

compression coding. In order to improve the quality of the reconstructed image and

video, several deblocking algorithms have been proposed. In this paper, we will

introduce these deblocking algorithms and classify them into several categories. On

the other hand, the conventional PSNR is widely adopted for estimating the quality of

the compressed image and video. However, PSNR sometimes does not reveal the

quality perceived by human visual system. In this paper, we will introduce one

measurement to estimate the blockiness in the compressed image and video.

1. Introduction

Block-based transform coding is popularly used in image and video compression

standards such as JPEG, MPEG and H.26x because of its excellent energy compaction

capability and low hardware complexity. These standards achieve good compression

ratio and quality of the reconstructed image and video when the quantizer is not vey

coarse; however, in very low bit rate, the well-known annoying artifact in image and

video compression coding come into existence and degrade the quality seriously. This

artifact is called Blocking Artifact, which results from coarse quantization that

discards most of the high frequency components of each segmented macroblock of the

original image and video frame and introduces severe quantization noise to the low

frequency component. One example is shown in Fig. 1 to illustrate this.

0

2

4

6

8

0

2

4

6

8

-100

0

100

200

300

400

500

0

2

4

6

8

0

2

4

6

8

0

20

40

60

80

100

0

2

4

6

8

0

2

4

6

8

0

100

200

300

400

500

0

2

4

6

8

0

2

4

6

8

52.5

53

53.5

54

54.5

55

DCT

IDCT

Q/Q-1

Fig. 1 The highly compressed image block

The blocking artifact incurs discontinuity across the block boundaries in the

reconstructed image and video. Fig. 2 (a) and (b) shows the original image and the

compressed image, respectively. As can be seen from Fig. 1, there are many square

blocks in the highly compressed image.

Fig. 2 (a) The original image (b) The highly compressed image

 In order to reduce the annoying blocking artifacts, several deblocking algorithms

had been proposed. We can classify the deblocking algorithms into four types: in-loop

filtering, post-processing, pre-processing and overlapped block methods. The in-loop

filtering algorithm inserts deblocking filter into the encoding and decoding loop of the

video CODEC, and one example of this method is adopted in H.264/AVC. The

post-processing algorithms apply some post-processing lowpass filters and algorithms

after the image and video has been decoded to improve the image and video quality.

The pre-processing algorithms pre-process the original image and video so that the

quality of the reconstructed image and video can be the same as that without being

processed under lower bit rate. The overlapped block methods include lapped

orthogonal transform (LOT) whose transform bases are overlaid to each other and

overlapped block motion compensation (OBMC) which consider the neighboring

blocks for motion estimation and motion compensation in video coding.

 The remained part of this paper is organized as follows. In Section 2, the

observations on blocking artifacts will be introduced. In Section 3, we will introduce

the in-loop filtering algorithm for removing the blocking artifact in video coding only.

In Section 4, several post-processing algorithms in image and video coding will be

described. In Section 5, the pre-processing method will be introduced. In Section 6,

we will give a brief description of the LOT and OBMC method for reducing the

blocking artifact. In section 7, we will introduce some blockiness measurement. In

Section 8, we will compare the pros and cons of the algorithms introduced in this

paper. In Section 9, we will give some conclusions and issues of the future word.

2. Observations of Blocking Artifacts

 There are three major observations on blocking artifacts could be noted in

block-based transform coding (BTC).

I. Because of the masking effect of the human visual system (HVS), there are

different sensitivity of the HVS to areas of the image and video with

different complexity. The blocking artifacts are more noticeable in flat areas

than in complex areas.

II. The deblocking filter can remove some high frequency discontinuity over

the block boundaries; however, it may result into blurring the real edges in

the original image or video frames.

III. The motion compensation prediction (MCP) propagates the blocking

artifacts into the next frame in video coding.

 Several deblocking algorithms are mainly based on these three observations, so

we describe them in this section in advance. In the following sections, we will enter

the primary issues of the deblocking algorithms.

3. In-loop Deblocking Filter

 As mentioned in the previous section, we know that the blocking artifact will

propagate into the later frames in video coding, which will degrade the visual quality

and thus affect the compression ratio. Based on this observation, we can achieve

higher compression ratio and better visual quality if we can effectively eliminate the

blocking artifacts. Therefore, H.264/AVC and H.263+ add the deblocking filter into

the coding loop to improve the visual quality and the accuracy of MCP. In the

following two sub-sections, we will introduce the H.264/AVC in-loop filter and one

novel in-loop filter in [4].

3.1 H.264/AVC In-loop Deblocking Filter

 In order to enhance the visual quality and coding performance, H.264/AVC

adopts the in-loop filter in its coding loop [1-3]. Fig. 3-1 shows the encoding

architecture of H.264/AVC. As can be seen from the figure, the previously

reconstructed frame passes the loop filter before motion estimation. Because the

filtered frame is more similar to the original frame, we can obtain motion vectors with

higher accuracy.

Intra

Inter
Transform Quantization

Motion

Estimation

Frame

Buffer

Coefficient

Scanning

Entropy

Coding

Motion

Compensation

Intra Frame

Prediction

Inverse

Quantization

Inverse

Transform

In-Loop

Filter

Video Source

Motion Vector

Bitstream

Fig. 3-1 The encoder architecture of H.264/AVC

 Now we have the fundamental concept about the deblocking filter in the

H.264/AVC encoder, we will briefly describe how the H.264/AVC deblocking works.

Fig. 3-2 shows the model of two dequantized blocks across the boundaries in

H.264/AVC. 0p , 1p , 2p and 3p denote the pixels in the left (top) 4х4 block while

0q , 1q , 2q and 3q denote the pixels in the right (down) 4х4 block. Because only

low frequency components are reserved after coarse quantization, the discontinuity,

which seems to be a newly high frequency component, comes into existence across

the block boundary. Therefore, we must apply the lowpass filter to discard the new

high frequency components. The orange curve indicates the pixels after filtering.

p3 p2 p1 p0

q0 q1 q2 q3

Fig. 3-2 The model of blocking artifact across the block boundary in H.264/AVC

 Because there are inter-frame and intra-frame coding in video compression,

H.264/AVC apply the filters with different strength based on the type of coding

frames. Thus, H.264/AVC encoder must determine the boundary strength (BS) before

filtering. The BS parameters are determined according to Table 3-1.

Table 3-1 The coding mode based decision for the parameter BS

Block modes and conditions BS Pixels to be modified

At least one of the blocks is Intra coded and the

edge is a macroblock edge

4 0p , 1p , 2p

0q , 1q , 2q

Both of the blocks are Intra coded, but the

boundary is not a macroblock boundary

3 0p , 1p

0q , 1q

Neither of the two blocks are intra coded, and the

two blocks contain inter-coded coefficients (That

is, both blocks refer to the same frame)

2 0p , 1p

0q , 1q

Neither of the two blocks are intra coded and

inter coded

1 0p , 1p

0q , 1q

Otherwise 0 No filtering is applied

 On the other hand, H.264/AVC defines two parameters α and β to determine

what type of the filter will be applied. Because there is no room for listing all the filter

coefficients of each filter, the reader can refer to [3] for more details about this.

3.2 Optimal Post-Process/In-Loop Filtering

 In the previous sub-section, we introduced the H.264/AVC in-loop filter for

removing the blocking artifact. However, the filter coefficients are fixed so that they

may not be the best solution to all the macro blocks. In [4], Kim et al. proposed a new

adaptive in-loop filtering algorithm for removing the blocking artifacts and recovering

the compressed video as much as possible. Fig. 3-3 shows the overall block diagram

of the encoder in [4].

Transform Quantization

Multiplex

Find Optimal

Filter Parameters

for Kernel G

Video Source
DCT

CoefficientsEntropy

Coding

Coder

Control

Inverse

Quantization

Inverse

Transform

Frame

Buffer

Filter with

G

Buffer

Motion

Compensation

Motion

Estimation

Buffer Fullness

Enable

Prediction

QP

Previous

Decoded

Frame

Motion Vector

Residue

Data out

OPF

ILOF0

Fig. 3-3 The overall block diagram of the encoder in

 In contrast to the H.264/AVC in-loop filter, the algorithm adaptively determines

the filter coefficients according the new input frame. We find the optimal filter

coefficients which minimize the difference between the previous reconstructed frame

and the new input frame. In this approach, the in-loop optimal filter (ILOF) is applied,

and the optimal filtered frames are used in the coding loop. In another approach called

OPF, the optimal filtered frames are not used in the coding loop. Until now we have a

brief knowledge about the overall encoder architecture in [4]. We will introduce how

to obtain the filter coefficients in the remained part of this sub-section.

 We denote the new input frame by I, which is a W-by-H matrix. The filter kernel

is expressed as l-by-l matrix G and the reconstructed frame is expressed as a W-by-H

matrix I� . The relationship of these three matrixes can be expressed as

 = ∗I I G� (3-1)

 If we can find one matrix G satisfies (3-1), the optimal filter can be obtained.

That is, the objective is to find the filter matrix satisfies

 arg min || ||− ∗
G

I I G� (3-2)

 For simplicity, we convert the filter and the original image matrix to row-stacked

form vectors as (3-3) and (3-4)

The filter kernel coefficients: () (,), 0 , 1m nl m n m n l+ = ≤ ≤ −g G (3-3)

The original image values: () (,), 0 1 and 0 1i jl i j i W j H+ = ≤ ≤ − ≤ ≤ −b I (3-4)

 Here we define a new matrix called Window Matrix A with size W-by-H, whose

element ai,j is composed of the l-by-l matrix which is a window centered around the

pixel location (i,j) of (,)i jI� as shown in Fig. 3-4. The l-by-l matrix is not right the

element of ai,j, it must be converted to the row-stacked form vector with size l
2
. In

order to be consistent with the previous expression, the matrix A is converted to (3-5).

G

l

l I(i,j)
^

Fig. 3-4 The element of the window matrix

 Window matrix:

0,0

0,1

, () (1)

T

T

T

W H WH

a

a

a
×

 
 
 =
 
 
  

A
�

 (3-5)

 Now we can express (3-1) as (3-6)

 =Ag b (3-6)

 In order to solve (3-6) using the linear algebra methods, we must obtain the

square matrixes. Therefore, we multiply (3-6) by A
T
 in both sides and obtain the new

equality (3-7)

 =Ag b (3-7)

where T
l l× =A A A and T

1l× =b A b

 If the inverse matrix of A can be obtained, we can find the filter coefficients g

that minimize (3-2). However, the computation cost to find the filter coefficients is

high because the size of the matrix A is very large and it is hard to find its inverse

matrix. In [4], the authors found that (3-7) can be solved by an iterative algorithm

called iterative preconditioned conjugate gradients algorithm [5], which can save

large computation. The algorithm is not introduced here, the interested reader can

refer to [4] for more details.

4. Post-processing Deblocking Algorithms

 Post-processing algorithms are the most popular methods for improving the

quality of the image and video and eliminate the annoying blocking artifact. On the

other hand, the post-processing algorithms can achieve deblocking without the

original image and video, so the standard need not to be modified. In this section, we

will introduce several post-processing algorithm for removing blocking artifact.

4.1 Reduction of Blocking Artifacts in DCT Domain

 In this subsection, we introduce a post-processing filtering algorithm in DCT

domain [6-8]. We define the block ,

, (,)k l

m nb u v and ,

, (,)k l

m nB u v first. , (,)m nb u v is the

(m,n)-th 8х8 block in the compressed image, and , (,)m nB u v is the DCT coefficients

of , (,)m nb u v . ,

, (,)k l

m nb u v is the shifted block with displacement k pixel in the x

direction and displacement l pixels in the y direction with respective to block

, (,)m nb u v , and ,

, (,)k l

m nB u v is the DCT coefficients of the block ,

, (,)k l

m nb u v . One

example is shown in Fig. 4-1.

1,m n
b −

,m nb

1, 1m n
b − −

, 1m n
b −

1, 1

,m nb
− −

Fig. 4-1 Example of shifted block
,

, (,)k l

m nb u v

 In the original image, the neighboring DCT coefficients at the same frequency

are very similar and do not vary radically within a small range. Thus, we can apply

lowpass filter to the DCT coefficients at each frequency to filter the high frequency

parts resulting from blocking effect. However, this method may blur the real edges in

the original image, so we must have the mechanism to detect activity of the block and

apply the filter with corresponding strength.

 DCT-domain filtering is applied to revise the block , (,)m nB u v to obtain the new

DCT coefficients � , (,)m nB i j .

 � ,
, , ,

1
(,) (,)

h h
k l

m n k l m n

k h l h

B i j w B u v
W =− =−

= ∑ ∑ (4-1)

 ,

h h

k l

k h l h

W w
=− =−

= ∑ ∑ (4-2)

 The post-filtering works in different ways for the blocks with different activities.

 For blocks with low activity, the blocking artifact is more noticeable, so we

apply strong filtering to smooth the high frequency components. The filter

coefficients are defined in (4-3).

 , 1, , 2,..., 2
k l

w k l= = − (4-3)

 For blocks with high activity, the blocking artifact is less noticeable, so we apply

filtering with less strength to smooth blocking artifact and preserve the real edge. The

filter coefficients are defined in (4-4).

 ,

3, for (,) (0,0)

1,
k l

k l
w

otherwise

=
= 


 (4-4)

 There are several functions to detect the activity. However, we do not list the

lengthy equations in this paper, the interested reader can refer to [6-8] for more

details.

4.2 Deblocking Using Weighted Sums of Symmetrically

Aligned Pixels

 In [9], Averbuch et al. proposed a new deblocking using the symmetrical pixels

across the block boundaries. The deblocking algorithm using weighted sums of

symmetrically aligned pixels is abbreviated as WSSAP.

 Denote the image with size R×C as follows

 { , }, 0 -1, 0 -1
i j

I p i R j C= ≤ ≤ ≤ ≤ (4-5)

 We divide the input image into several 8×8 sub-blocks Br,c

 , 8 8 , 0,...,7{ , } , 0 , 0
8 8

r c r i c j i j

R C
B p r c+ + == ≤ ≤ ≤ ≤ (4-6)

 We define a deblocking frame B(Sf)r,c whose size is Sf×Sf .

 �
,

,,

8 8
() { }, 0 , 0

m n

r cf r c

f f

S B m n
S S

= ≤ ≤ ≤ ≤B (4-7)

where �
,

, 1 1
8 () ,8 ()

2 2

{ }, 0 1, 0 1
f f

m n

r c f f
r m S i c n S j

B p i S j S
+ − + + − +

= ≤ ≤ − ≤ ≤ −

 Two examples of (4-6) are shown in Fig. 4-2.

�
0,0

,r cB �
0,2

,r cB

�
2,0

,r cB �
2,2

,r cB

,r cB
,r c

B

�
0,0

,r cB

�
1,0

,r cB

�
0,1

,r cB

�
1,1

,r cB

 (a) Sf=4 (b) Sf=8

Fig. 4-2 Two examples of the deblocking frames B(Sf)r,c

 For simplicity, the 8r+(m-(1/2))Sf and 8c+(n-(1/2))Sf terms in (4-7) are ignored,

and we rewrite (4-7) as (4-8).

 �
'

,
'

, , , 0,...,
{ } , where 1

f

m n

r c i j i j f fS
B p S S

=
= = − (4-8)

 The pixel to be filtered is denoted by ,i j
p , and the filtered pixel

,

'

i j
p is defined

in (4-9). The pixels ' ,fS i j
p

−
 and ', fi S j

p
−

lie symmetrically to ,i j
p , and the

pixel ' ',f fS i S j
p

− −
lie symmetrically to ,i j

p with respect to the center of the deblocking

frame. The four weights ,i j
α , ' ,fS i j−

β , ', fi S j−
γ , ' ',f fS i S j− −

δ are the filter coefficients.

 ' ' ' ' ' ' ' '
,

'

, , , , , , , ,i j f f f f f f f f
i j i j S i j S i j i S j i S j S i S j S i S j

p p p p p
− − − − − − − −

= α ⋅ + β ⋅ + γ ⋅ + δ ⋅ (4-9)

 In [9], the authors obtain the filter coefficients by extending the 1D case to the

2D case. How the filter coefficients are obtain is not included in this paper, please

refer to [9] for more details. In the 1D case, we have two filter coefficients only for

each pixel, and the filter coefficients can be classified into linear solution and

quadratic solution, which are defined in (4-10) to (4-12).

1) Linear Solution

Let the linear solution
L

ω be of the form ()
L

x ax bω = + . Then the solution is

 [0, 1]() , if x [0, 1]k

L
x x k

k

− θ − η
ω = + η ∈ −

−1
 (4-10)

 [0, 1] (2)
() , if x [,2 1]k

L

k
x x k k

k k

− η − θ θ − η − θ
ω = + ∈ −

−1 −1
 (4-11)

2) Quadratic Solution

Let the linear solution
Q

ω be of the form 2()Q x ax bx cω = + + . Then the solution is

 2 ()(1 2)
()

((
Q

k
x x x

k k k k

(θ − η) θ − η −
ω = + + η

−1) −1)
 (4-12)

where
2

f
S

k = and [0,1]θ ∈

 Now, we can obtain the 2D filter coefficients based on (4-10) to (4-12). The filter

coefficients ,i j
α , ' ,fS i j−

β , ', fi S j−
γ , ' ',f fS i S j− −

δ are defined in (4-13) to (4-16).

 , () ()
i j

i jα = ω ⋅ω (4-13)

 '

'

,
(,) ()

f
fS i j

S i j j
−

β = ψ − ⋅ω (4-14)

 '

'

,
() (,)

f
fi S j

i i S j
−

γ = ω ⋅ψ − (4-15)

 ' '

' '

,
() ()

f f
f fS i S j

S i S j
− −

δ = ψ − ⋅ψ − (4-16)

where ()ω ⋅ and ()ψ ⋅ are both linear or quadratic

 Until now, we obtain the filter coefficients, so we can achieve deblocking

through (4-9).

4.3 Deblocking Using Offset and Shift Technique

 We have introduced two post-processing deblocking algorithms. However, the

computation cost of the DCT domain deblocking method is high and the WSSAP

algorithm may excessively blur the image. In [10], Kim et al. proposed a new

deblocking algorithm that saves large computation cost and prevents from excessively

blurring the real edge.

 The algorithm is described as follows. In order to check the direction the

blocking artifact locates, we need some measurements. First, we define a deblocking

block (DB) as a squared of adjacent pixels as shown in Fig. 4-3.

1,1g1,0g 1,2g

0,1g0,0g 0,2g

2,1g2,0g 2,2g

1,4g1,3g 1,5g

0,4g0,3g 0,5g

2,4g2,3g 2,5g

1,6g 1,7g

0,6g 0,7g

2,6g 2,7g

4,2g4,1g

3,1g3,0g 3,2g

5,1g5,0g 5,2g

4,5g4,4g

3,4g3,3g 3,5g

5,4g5,3g 5,5g

4,7g
4,0g

3,6g 3,7g

5,6g 5,7g

6,1g6,0g 6,2g

7,1g7,0g 7,2g

6,4g6,3g 6,5g

7,4g7,3g 7,5g

6,6g 6,7g

7,6g 7,7g

4,6g
4,3g

Block

boundary

Block boundary

Fig. 4-3 The Deblocking Block

 To classify the type of the DB, we define the horizontal activity and the vertical

activity as follows:

6

0

H k

k

ACH C
=

= ∆∑ (4-17)

6

0

V k

k

ACH R
=

= ∆∑ (4-18)

where C∆ and R∆ are the difference in the horizontal and vertical direction,

respectively. They are define as

7

, , 1

0

| |k i k i k

k

C q q +
=

∆ = −∑ (4-19)

7

, , 1

0

| |k k j k j

k

R q q +
=

∆ = −∑ (4-20)

 After the activity variables are derived, we can classify the DB into four types

according to Table 4-1. The term UDB indicates Uniform Deblocking Block. The two

terms HDB and VDB indicate Horizontal Deblocking Block and Vertical Deblocking

Block, respectively. The term CDB indicates Complex Deblocking Block.

Table 4-1 Classification of the deblocking block

 UDB HDB VDB CDB

ACTH < T > T < T > T

ACTV < T < T > T > T

 After the block classification, we apply different filtering method on each DB

type as shown in Fig. 4-4.

(a)UDB (b)HDB (c)VDB (d)CDB

Fig. 4-4 Filtering direction and strength for each DB type

 In order to find the amount of the modification, we define a variable “offset” as

 3 4offset p p= − (4-21)

1) Filtering for Uniform Deblocking Blocks

 Because the whole block is uniform, we must apply the strong filter to remove

the blocking artifact. The filtered pixels are defined as (4-22) and (4-23). One

example is shown in Fig. 4-5.

 ' | |
() (), for i=1,2,3

i i

i

offset
p p sign offset= − ⋅

α
 (4-22)

 ' | |
() (), for i=4,5,6

i i

i

offset
p p sign offset= + ⋅

α
 (4-23)

where {8, 4, 2, 2, 4,8}
i

α =

p1 p2 p3 p4 p5 p6

offset

Block boundary

(a)

p1 p2 p3 p4 p5 p6

Block boundary

Offset/8
Offset/4

Offset/2

Offset/2
Offset/4

Offset/8

(b)

Fig. 4-5 The one-dimensional representation of the UDB (a) Before filtering (b)

After filtering

2) Filtering for Directional Deblocking Blocks

 The directional deblocking block (DDB) includes the HDB and VDB.

� If both the top and bottom blocks are regarded uniform, the current block is

regarded as HDB. For HDB, we perform weaker filtering along the horizontal

direction and stronger filtering along the vertical direction.

� If both the left and right blocks are regarded uniform, the current is regarded as

VDB. For VDB, we perform the weaker filtering along the vertical direction and

stronger filtering along the horizontal direction.

 The filtering with less strength is defined in (4-24) and (4-25).

 '

3 3

| |
() ()

4

offset
p p sign offset= − ⋅ (4-24)

 '

4 4

| |
() ()

4

offset
p p sign offset= + ⋅ (4-25)

3) Filtering for Complex Deblocking Blocks

 If the DB is classified to CDB, we only apply weaker filtering along the block

boundary and preserve the inter texture as shown in Fig. 4-4 (d). After the block

boundary is filtered, a 2-D mask is used to remove blocking artifact while preserving

the real edges. The filter is defined in (4-26).

5
g

4
g

6
g

2
g

1
g

3
g

8g7g 9g

Fig. 4-6 The filter kernel

 ' 1 9 3 7 2 8 4 6
5 0 5 1 2 3 4

2 2 2 2

g g g g g g g g
g w g w w w w

+ + + +
= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ (4-26)

 1 1 9(| |)w f g g= − (4-27)

 2 3 7(| |)w f g g= − (4-28)

 3 2 8(| |)w f g g= − (4-29)

 4 4 6(| |)w f g g= − (4-30)

where () 0.25 , where f W e−β∆∆ = ⋅ β = 0.04

5. Pre-processing Algorithms

 We can improve the quality of the compressed image and video by applying the

deblocking algorithms. The deblocking algorithms described above are all

post-precessing methods. In [13], Wang et .al proposed a pre-processing algorithm to

enhance the coding efficiency and to achieve deblocking at the same time. Fig. 5-1

shows the results of reconstructed image with and without pre-processing. Fig. 5-1(a)

shows the original image S without pre-processing, its compressed frame '
S and

its reconstructed frame ''
S . Fig. 5-1(b) is the frame after pre-processing

p
S , its

compressed frame '

pS and its reconstructed frame ''

pS . From the reconstructed

results, we can observe that both of the two reconstructed frames ''
S and ''

pS are

very similar to the original frame S , but the data quantity of '

pS is much less than

that of '
S .

S

p3
p2

p1

p0

q0
q1

q2

q3

'S ''S

pS '

p
S ''

pS

Encoding Decoding

Encoding Decoding

Fig. 5-1 The reconstructed block boundary with and without pre-processing

 We introduce one pre-processing method combined with H.264 inloop

deblocking filter. Denote the 8-point block boundary in original image as I, the block

boundary after pre-processing as R and the filtered block boundary as V. The

deblocking filter only works on the center four points 0 1 2 3, , ,q q q q . The three block

boundary is defined in (5-1) to (5-3).

 3 2 1 0 0 1 2 3Original(I) : (, , , , , , ,)p p p p q q q q (5-1)

 ' ' ' ' ' ' ' '

3 2 1 0 0 1 2 3Pre-processed(R) : (, , , , , , ,)p p p p q q q q (5-2)

 ' ' '' '' '' '' ' '

3 2 1 0 0 1 2 3Filtered(V) : (, , , , , , ,)p p p p q q q q (5-3)

 Our objective is to minimize the difference between I and V. We define the

difference ε in (5-4), and we can obtain the minimum by take the derivative of ε .

 V Iε = − (5-4)

 The function have four variables ' ' ' '

0 1 2 3(, , ,)Q q q q q= , and the equation is

expressed as (5-5).

 2() 0

T
V I V

V I
Q Q Q

ε ∂ −  ∂ ∂
= = − = ∂ ∂ ∂ 

 (5-5)

 By solving (5-5), we can obtain the pre-processing formulas which are defined in

(5-6) to (5-9).

 ' ' '

0 0 1 0 1 2 0 2

1
(9 40 20 40 16 8 49 10)

49
q p p q q q p p= − + + + + − − − (5-6)

 ' '

1 0 0 14 4 4q p q p= − + + (5-7)

 ' '

2 0 1 0 1 2 2

1
(4 4 2 4 18 40)

49
q p p q q q p= − − − − + + + (5-8)

 '

3 3q q= (5-9)

6. Overlapped Block Methods

 As mentioned earlier, the block-based transform and quantization is adopted to

achieve decorrelation in many existing image and video compression standards.

However, this kind of transform does not take the correlation of pixels across the

block boundaries into account, so the block artifact appears in the reconstructed image

and video. On the other hand, in video compression coding, the motion compensation

will propagate the blocking artifact into next frames. In order to overcome these

problems, the overlapping transform and overlapped block motion compensation

methods are proposed. In the remained parts of this sub-section, we will introduce

these two methods.

6.1 Lapped Orthogonal Transform

 In conventional block-transform, the image is segmented into several

non-overlapping blocks and each of these blocks is transformed and quantized

separately. In Lapped Orthogonal Transform [14], the blocks overlap slightly, so the

redundant information is transmitted for the samples in the block boundaries. The

LOT (Lapped Orthogonal transform) is introduced as follows.

 Assume the 1D discrete time signal is a sequence of MN samples, where N is the

block size, and M is the number of the segmented blocks. We denote the original

signal by x0 and the transform coefficients as y0. The relationship between x0 and y0 is

expressed in (6-1).

 0 0y Tx= (6-1)

where T is the transform matrix with size MNхMN

1

0

0

2

0

0

P

P

T

P

P

 
 
 
 =
 
 
  

� (6-2)

where 0P , 1P and 2P are matrices with size LхN. The matrices 1P and 2P are

different from 1P because of the two boundary block of the original have only one

neighboring block. Thus, they are defined in a different way.

 We show the concept of LOT in Fig. 6-1. In conventional block-based transform,

we code current block individually. However, in LOT, we take the current block and

its neighboring block for decorrelation. We should note that we can obtain the

transform coefficients with size N after taking LOT of the block with length L.

Fig. 6-1 The current block and its neighboring block for decorrelation in LOT

 The autocorrelation matrix of the input signal is denoted by
xx

R .

2

1

1

2

1

1

1

1

L

L

xx

L

L

R

ρ ρ ρ

ρ ρ

ρ ρ

ρ ρ ρ

−

−

 
 
 
 =
 
 
 
 

�

� � �

�

 (6-3)

 An optimal LOT should maximize the energy compaction measurement
TC

G

2

1

1/

2

1

1 N

i

i
TC N

N

i

i

N
G

σ

σ

=

=

=
 
 
 

∑

∏

 (6-4)

where 2

i
σ is the ith diagonal entry of the matrix 0R

 0 0 0

T

xx
R P R P= (6-5)

 After some math manipulation, we can obtain the transform matrix 0P in (6-6)

 0

0 0
0

0 0 01

0 0 02
0

0 0

e o

e o

I I

D D I I I I I
P

D D I I I I Z

I I

   
   −      =       −   
   

−   

 (6-6)

where 1 2 / 2 1N
Z TT T −= � .

e
D and 0D are the NхN/2 matrices containing the even and

odd DCT functions, respectively.

 The plane rotation matrix T is defined as

0 0

0 () 0

0 0

i i

I

T Y

I

θ

 
 =  
  

 (6-7)

where
cos sin

()
sin cos

i i

i

i i

Y
θ θ

θ
θ θ

 
=  − 

. Now we have the transform matrix (6-6), so we can present the implementation

here. We take block size 8 for introduction, and the flow diagram of the fast LOT is

shown in Fig. 6-2.

cos iθ

cos iθ

sin iθ−

sin iθ

iθ−

=
0

1

2

3

4

5

6

7

0

2

4

6

1

3

5

7

0

1

2

3

4

5

6

7

0

2

4

6

1

3

5

7

Y(0)

Y(2)

Y(4)

Y(6)

Y(1)

Y(3)

Y(5)

Y(7)

−

−

−

1θ

2
θ

3θ

DCT

DCT

-

-

-

-

-

-

-

-

Fig. 6-2 Fast LOT with block size 8

 Fig. 6-3 shows the overall LOT of the whole image. As can be seen from this

figure, the first and last blocks do not have the complete neighboring blocks. Thus, we

reflect the data at these two boundaries, which can form the transform matrix 1P and

2P in (6-2).

DCT
E

O

�Z

DCT
E

O

�Z

DCT
E

O

�Z

eJH

eH

�Z

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

2

2

-

-

-

-

-

-

-

… …

Block 1

Block 2

Block M

LOT of

Block 1

LOT of

Block 2

LOT of

Block M

Fig. 6-3 Flow diagram of the fast LOT for the full data sequence

The notation J in Fig. 6-3 is the “counter-identity” which is define as

0 1

1

1 0

J

 
 
 =
 
 
 

�
 (6-8)

 With the fast LOT algorithm, we can compute the DCT coefficients for each

blocks and then applying the +/- and Z . Thus, the computation cost of LOT is not

very far from that of DCT, and we can reduce the blocking artifact effectively.

6.2 Overlapped Block Motion Compensation

 The conventional motion estimation and compensation algorithm produce block

edges in the compensated frame because the motion vectors between the neighboring

blocks are not always the same. These block edges will decrease the coding efficiency

because the energy of the residue signal increase. When the LOT is applied to the

residue, the block edges within the overlapped block will introduce high frequency

components to the residue. Therefore, overlapped block motion estimation and

compensation algorithm [15] is proposed to reduce the high frequency components in

the residue

A) Overlapped block Motion Estimation

 Fig. 6-4 shows the overlapped block motion estimation scheme. The reference

frame and the current frame are segmented into several overlapped blocks. The target

block (,)
iv

P x y is predicted from an enlarged block size NхN (which is larger than

the original block size). The difference block for each target block is defined as

 (,) (,) (,)
i iv v

E x y P x y S x y= − (6-9)

where (,)S x y is the block in the original frame.

 In order to reduce the high frequency components in the difference blocks, a

window function (,)W x y is operated to the prediction error signal. The window

function is designed to decay toward the block boundaries. Therefore, we can obtain a

new weighted difference block (,)
iv W

E x y defined as

 (,) (,) (,)
i iv W v

E x y E x y W x y= × (6-10)

 We search for the candidate motion vector by using (,)
iv W

E x y , and the mean

absolute error (MAE) is redefined in (6-11)

2

1 1

1
(,)

i

N N

v W

x y

MAE E x y
N = =

= ∑∑ (6-11)

∑ ∑

EvaluationTarget Block

Overlapped Block

Reference blocks

Motion Vector OutputCurrent Frame

Reference Frame

Window Function

(,) (,) (,)
i iv v

E x y P x y S x y= −

(,) (,) (,)
i iv W vE x y E x y W x y= ×

2
1 1

1
(,)

i

N N

v W

x y

MAE E x y
N = =

= ∑∑

Fig. 6-4 Overlapped Block Motion Estimation

B) Overlapped block Motion Compensation

 After the motion vector (,)
v

P x y for each target block (,)
iv

P x y is determined,

the compensated block is also generated from the enlarged reference blocks. The

overall overlapped block motion compensation scheme is shown in Fig. 6-5.

(,) (,) (,)
vW v

P x y P x y W x y= ×

Overlapped Block

Motion Vectors

Prediction Frame

Reference Frame

Window Function

Fig. 6-5 Overlapped Block Motion Compensation

 The prediction block picks up the most similar block by the motion vector. The

enlarged block is also multiplied with the window function (,)
v

P x y to form the

weighted prediction block (,)
vW

P x y .

 (,) (,) (,)
vW v

P x y P x y W x y= × (6-12)

 The whole prediction frame is generated by summing all the weighted prediction

blocks. With the overlapped block motion estimation and motion compensation

algorithm, the reconstructed frames without severe block edges can be obtained.

7. Block-Edge Impairment Metric

 Although PSNR (Peak Signal-to-Noise Ratio) is widely adopted to express the

quality of the reconstructed image and video, it does not always reveal the real quality

perceived by the HVS. On the other hand, we can improve the quality of the

compressed image and video by means of deblocking algorithms and the PSNR will

increases proportional quality. However, in some condition, the improving scale of

PSNR is not high, but large amount of the blocking artifacts are reduced. Therefore,

several block-edge impairment metrics [16-17] have been proposed.

 In this section, we introduce one of these block-edge impairment metrics called

Generalized Block-Edge Impairment Metric, abbreviated GBIM. Assume the

reconstructed image or video frame is f defined as

 { }1 2, ,...,
cc c cN

=f f f f (7-1)

where
cj

f is the jth column and
c

N is the width of the image f .

 The interpixel difference between the block boundaries in the horizontal

direction is defined as

8 9

16 17

(8) (7)

c c

c c

c

c Nc c Nc

D

− −

− 
 − =
 
 

−  

f f

f f
f

f f

�
 (7-2)

where each of the block is a 8 х 8 block.

 The metric to measure the horizontal blockiness is defined as

 1/ 2
/8 1

(8) (8 1)

1

c

h c

N

k c k c k

k

M D f

−

× × +
=

=

 
 = −  

 
∑

W

w f f
 (7-3)

where 1 2 /8 1, ,...,
cN

diag −
 =  W w w w is the diagonal weighting matrix which takes

the spatial characteristics into account. 1, 2, ,, ,...,
k j j Nr j

diag w w =  w w where
r

N is

the height of the image, and 8j k= × for 1,2,..., / 8 1
c

k N= − .

 The weighting function ,i j
w is defined as

,

,

,

,

,

,

ln 1 ,if
1

255
ln 1 , otherwise

1

i j

i j

i j

i j

i j

i j

w

µ
λ µ ζ

σ

µ

σ

  
  + ≤

 +  
= 

 −
 +  +  

 (7-4)

where ζ is the average luminance value which is proportional to the blockiness and

distortion, and
ln(1 255)

ln(1)

ζ
λ

ζ

+ −
=

+
.

 For horizontal blocks, the mean ,i j
µ and variance ,i j

σ is defined as the

average of the two adjacent blocks

, ,

,
2

L R

i j i j

i j

µ µ
µ

+
= (7-5)

where , ,

7

1

8

j
L

i j i n

n j

fµ
= −

= ∑ and
8

, ,

1

1

8

j
R

i j i n

n j

fµ
+

= +

= ∑ and ,i n
f represents an individual pixel

at row i and column n of the image f .

, ,

,
2

L R

i j i j

i j

σ σ
σ

+
= (7-6)

where ()
1/ 2

2

, , ,

7

1

8

j
L L

i j i n i j

n j

fσ µ
= −

 
= − 
  
∑ and ()

1/ 2
28

, , ,

7

1

8

j
R R

i j i n i j

n j

fσ µ
+

= +

 
= − 
  
∑

 We normalize
h

M by the average interpixel difference E to obtain
hGBIM

M .

 /
hGBIM h

M M E= (7-7)

7

1

1

7
n

n

E S
=

= ∑ (7-8)

where

1/ 2
/8 1

(8) (8 1)

1

cN

n k c k n c k n

k

S
−

× + × + +
=

 
 = −  

 
∑ w f f

 The
hGBIM

M is used to describe the horizontal blockiness, we can obtain the

vertical blockiness metric
vGBIM

M by similar process. Finally, we can obtain the

GBIM
GBIM

M which is defined as

GBIM hGBIM vGBIM

M M Mα β= + (7-9)

 In order to show the performance of GBIM, we give two examples shown in Fig.

7-1. As can be seen from the simulation result, the PSNR of the compressed image

and the filtered one is not far different from each other, but the blockiness is reduced

and the
GBIM

M reveals the fact.

Fig. 7-1 (a) Reconstructed Image Fig. 7-1 (b) Reconstructed image after

deblocking

GBIM
M =3.11, PSNR=21.75 dB

GBIM
M =1.05, PSNR=21.86 dB

Fig. 7-1 The PSNR and GBIM of two compressed images before and after

deblockin, respectively

8. Comparison

 In this section, we discuss the pros and cons of each algorithm.

A) In-loop Deblocking

 Advantage Disadvantage

H.264/AVC 1. It adaptively selects the

deblocking filter based on

the strength of blockiness for

deblocking.

2. The complexity is low

The coding efficiency is

lower than the OPF/OLF

algorithm

Optimal

Post-Processing and

In-loop Filtering

It can achieve better coding

performance and reduce the

blocking artifact more

effectively than H.264/AVC

because it obtains the

optimal filter coefficients by

referring to the new input

frame

The complexity is very high

because it must iteratively

compute the filter

coefficients.

B) Post-processing Deblocking Algorithms

 The post-processing algorithms are employed at the decoder output, so they have

good potential to be integrated into existing image and video standards.

 Advantage Disadvantage

Reduction of

blocking artifacts

in DCT Domain

1. Take the HVS into account

2. Apply the filter with less

strength to preserve the real edge

3. Apply the filter with larger

strength to reduce the blocking

artifact

High complexity and

computation time because of

large amount of DCT

operation

WSSAP 1. The filter coefficients can be

obtained in advance

The deblocking operation is

applied to the whole image,

so it may blur the real edge

Offset and Shift 1. Take the HVS into account

Technique 2. Apply the filter with less

strength to preserve the real edge

3. Apply the filter with larger

strength to reduce the blocking

artifact

4. Low Complexity

5. Prevent the processed video

and image from blurring

C) Pre-processing Deblocking Algorithms

 The pre-processing deblocking algorithms combine the post-processing

deblocking algorithms to reduce the data rate, and the quality of the image and video

is very close to that without pre-processing.

D) Overlapped Block Methods

 All the deblocking algorithms described reduce the blocking artifact can be

classified into the remedy methods. In contrast to the other method, the overlapped

block methods prevents the blocking artifacts from happening in advanced, so it can

be classified into Prophylaxis. The disadvantage of the overlapped block methods is

that they are not compatible with the existing video and image standards.

9. Conclusions and Future Work

In this paper, we have introduced several deblocking algorithms to the reader. In

section 2, we briefly describe the characteristics and observations of blocking artifact,

and several deblocking algorithms that take advantage of these characteristics and

observations to improve the quality of the compressed image and video. In section 3

to 6, we introduced the four categories of deblocking algorithms, and the related cases

are given to each category.

The first type is the in-loop filter, which is used to reduce the blocking artifact in

compressed video. The advantage of the in-loop filter is that it can achieve better

improvement because it can refer to the new input video frame while the conventional

deblocking algorithm adopted in image compression is blind to the source image.

However, the in-loop filter is not compatible with the existing video coding standard.

The second type is the post-processing deblocking algorithm, which is the most

popular method because it can be combined with the existing image and video coding

standards. The basic idea of the post-processing methods is filtering the sharp edge

over the block boundary to smooth the compressed image and video by using the

lowpass filter. The third type is the pre-processing deblocking algorithm, which

modifies the source image and video in advance and reduces the bit rate, can achieve

the quality close to the direct compressed image and video. The last type is the

overlapped method, which is much different from other methods because the rule of it

is taking preventive injection instead of putting out the fire. The drawback of the

overlapped methods is that it is not compatible with the existing standards, which is

the same as the in-loop filter.

 In section 7, we introduce one blockiness metric GBIM because the conventional

metric PSNR does not always reveal the real quality perceived by the HVS. From the

simulation result we can observe that the PSNR of the processed image is very close

to that of the un-processed one, but GBIM effectively reveals the difference.

 To summarize, the conventional deblocking algorithms smooth the sharp block

boundary by lowpass filter. However, many conventional methods do not exploit the

characteristics of the blocking artifacts. Nowadays, more and more deblocking

algorithms take advantage of the characteristics of blocking artifacts to improve the

quality of the compressed image and video. These methods apply strong filter over the

flat area and weak filter over the complex area due to the HVS sensitivity to the

blocking artifact. As just mentioned, these new deblocking algorithms may not

improve the PSNR in a large degree, so we must have some blockiness metric to

estimate the performance of these deblocking algorithms. To add all the discussion,

the better deblocking algorithm based on the characteristics of the blocking artifacts

and the better blockiness metric may be the future trend.

10. References

[A] In-loop Filter

[1] Lain E.G. Richardson, “H.264 and MPEG-4 Video Compression: Video Coding

for Next-generation Multimedia”, John Wiley & Sons, Jan. 2004.

[2] Lee, Jae-Beom, Kalva and Hari, ”The VC-1 and H.264 Video Compression

Standards for Broadband Video Services”, Springer, 2008.

[3] “Text of ISO/IEC FDIS 14496-10/Draft ITU-T H.264: Information

Technology – Coding of Audio-Visual Objects: Advanced Video Coding”,

International Organization for Standardization, 2003.

[4] Dong-Hwan Kim, Hwa-Yong Oh, O˘guzhan Urhan, Sarp Ertürk and Tae-Gyu

Chang, “Optimal Post-Process/In-Loop Filtering for Improved Video

Compression Performance”, IEEE Trans. on Consumer Electronics, vol. 53, no.

4, Nov. 2007.

[5] S. Romero, and L.F. Romero, “An Optimized Preconditioned Conjugate Gradient

Algorithm”, Technicah Report No: UMA-DAC-02/11, University of Malaga,

Sept. 2002.

[B] Post-Filtering

[6] Tao Chen, Hong Ren Wu and Bin Qiu, “Adaptive Postfiltering of Transform

Coefficients for the Reduction of Blocking Artifacts”, IEEE Trans. on Circuits

and Systems for Video Technology, vol. 11, no. 5, Dec. 2001.

[7] Shizhong Liu and Alan C. Bovik, “Efficient DCT-Domain Blind Measurement

and Reduction of Blocking Artifacts”, IEEE Trans. on Circuits and Systems for

Video Technology, vol. 12, no. 12, May 2002.

[8] Ci Wang, Wen-Jun Zhang and Xiang-Zhong Fang, “Adaptive Reduction of

Blocking Artifacts in DCT Domain for Highly Compressed Images”, IEEE Trans.

on Circuits and Systems for Video Technology, vol. 50, no. 2, May 2004.

[9] A. Z. Averbuch, A. Schclar and D. L. Donoho, “Deblocking of block-transform

compressed images using weighted sums of symmetrically aligned pixels,” IEEE

Trans. on Circuits Syst. Video Technology, vol.14, pp.200-212, Feb. 2005.

[10] Jongho Kim, Minseok Choi, and Jechang Jeong, “Reduction of Blocking Artifact

for HDTV using Offset-and-Shift Techniques”, IEEE Trans. on Consumer

Electronics, vol. 53, no.4, November 2007.

[11] Zixiang Xiong, Michael T. Orchard, and Ya-Qin Zhang, “A Deblocking

Algorithm for JPEG-Compressed Images Using Overcomplete Wavelet

Representations”, IEEE Trans. on Circuits and Systems for Video Technology, vol.

7, no. 2, April 1997.

[12] Jongho Kim and Jechang Jeong, “Adaptive Deblocking Technique for Mobile

Video”, IEEE Trans. on Consumer Electronics, vol. 53, no. 4, Nov. 2007.

[C] Pre-Filtering

[13] Sheng-Ho Wang, Sung-Wen Wang, Yi-Shin Tung, Ja-Ling Wu, Jau-Hsiung

Huang, "Pre-Process for maximizing the effect of in-loop deblocking filtering in

H.264/AVC encoding," 5th EURASIP Conference focused on Speech and Image

Processing, Multimedia Communications and Services (EC-SIP-M 2005),

Smolenice, Slovak, 29 June - 2 July, 2005.

[D] Overlapped Block Methods

[14] H. S. Malvar and D. H. Staelin, “The LOT: transform coding without blocking

effects”, IEEE Trans. on Acoustic., Speech, Signal Processing, vol. 37, no. 4, pp.

553-559, April 1989.

[15] M. T. Orchard and G. J. Sullivan, “Overlapped block motion compensation: an

estimation-theoretic approach”, IEEE Trans. on Image Processing, vol. 3, no. 4,

pp. 693-699, Sep. 1994.

[E] Block-Edge Impairment Metric

[16] H. R. Wu and M. Yuen, “A Generalized Block-Edge Impairment Metric for

Video Coding”, IEEE Signal Processing Letters, vol. 4, no. 11, Nov. 1997.

[17] Athanasios Leontaris, Pamela C. Cosman and Amy R. Reibman, “Quality

Evaluation of Motion-Compensated Edge Artifacts in Compressed Video”, IEEE

Trans. on Image Processing, vol. 16, no. 4, April 2007.

